Show simple item record

dc.contributor.authorWang, Xiaohui ( )
dc.contributor.authorZhao, Peihao ( )
dc.date.accessioned2021-09-29T18:07:09Z
dc.date.available2021-09-29T18:07:09Z
dc.date.issued2020-05-27
dc.identifier.citationWang, X., & Zhao, P. (2020). Existence of weak solutions to superlinear elliptic systems without the Ambrosetti-Rabinowitz condition. Electronic Journal of Differential Equations, 2020(52), pp. 1-21.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14559
dc.description.abstractIn this article, we study the existence of the weak solution for superlinear elliptic equations and systems without the Ambrosetti-Rabinowitz condition. The Ambrosetti-Rabinowitz condition guarantees the boundedness of the PS sequence of the functional I for the corresponding problem. We establish the existence of the weak solution for the superlinear elliptic equation by using (PS)c form of the Mountain pass lemma, and the existence of the weak solution for the superlinear elliptic system by using (PS)*c form of the Linking theorem.
dc.formatText
dc.format.extent21 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSuperlinear elliptic systemen_US
dc.subjectWeak solutionen_US
dc.subjectMountain pass lemmaen_US
dc.subjectLinking theoremen_US
dc.titleExistence of weak solutions to superlinear elliptic systems without the Ambrosetti-Rabinowitz conditionen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record