Show simple item record

dc.contributor.authorBarreira, Luis ( Orcid Icon 0000-0003-4655-5792 )
dc.contributor.authorLlibre, Jaume ( Orcid Icon 0000-0002-9511-5999 )
dc.contributor.authorValls, Claudia ( Orcid Icon 0000-0001-8279-1229 )
dc.date.accessioned2021-09-29T20:26:15Z
dc.date.available2021-09-29T20:26:15Z
dc.date.issued2020-06-08
dc.identifier.citationBarreira, L., Llibre, J., & Valls, C. (2020). Linear type global centers of cubic Hamiltonian systems symmetric with respect to the x-axis. Electronic Journal of Differential Equations, 2020(57), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14564
dc.description.abstractA polynomial differential system of degree 2 has no global centers (that is, centers defined in all the plane except the fixed point). In this paper we characterize the global centers of cubic Hamiltonian systems symmetric with respect to the x-axis, and such that the center has purely imaginary eigenvalues.en_US
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectCenteren_US
dc.subjectGlobal centeren_US
dc.subjectHamiltonian systemen_US
dc.subjectSymmetry with respect to the x-axisen_US
dc.subjectCubic polynomial differential systemen_US
dc.titleLinear type global centers of cubic Hamiltonian systems symmetric with respect to the x-axisen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record