Show simple item record

dc.contributor.authorFloridia, Giuseppe ( Orcid Icon 0000-0002-8698-1086 )
dc.date.accessioned2021-09-29T20:45:31Z
dc.date.available2021-09-29T20:45:31Z
dc.date.issued2020-06-15
dc.identifier.citationFloridia, G. (2020). Nonnegative controllability for a class of nonlinear degenerate parabolic equations with application to climate science. Electronic Journal of Differential Equations, 2020(59), pp. 1-27.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14566
dc.description.abstractWe consider a nonlinear degenerate reaction-diffusion equation. First we prove that if the initial state is nonnegative, then the solution remains nonnegative for all time. Then we prove the approximate controllability between nonnegative states via multiplicative controls, this is done using the reaction coefficient as control.en_US
dc.formatText
dc.format.extent27 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSemilinear degenerate reaction-diffusion equationsen_US
dc.subjectEnergy balance models in climate scienceen_US
dc.subjectApproximate controllabilityen_US
dc.subjectMultiplicative controlsen_US
dc.subjectNonnegative statesen_US
dc.titleNonnegative controllability for a class of nonlinear degenerate parabolic equations with application to climate scienceen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record