Show simple item record

dc.contributor.authorWang, Wenbo ( Orcid Icon 0000-0001-9538-0154 )
dc.contributor.authorLi, Quanqing ( )
dc.date.accessioned2021-10-04T13:32:39Z
dc.date.available2021-10-04T13:32:39Z
dc.date.issued2020-07-22
dc.identifier.citationWang, W., & Li, Q. (2020). Existence and concentration of positive ground states for Schrödinger-Poisson equations with competing potential functions. Electronic Journal of Differential Equations, 2020(78), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14585
dc.description.abstractThis article concerns the Schrödinger-Poisson equation -ε2Δu + V(x)u + K(x)φu = P(x)|u|p-1 u + Q(x)|u|q-1u, x ∈ ℝ3, -ε2Δφ = K(x)u2, x ∈ ℝ3, where 3 < q < p < 5 = 2* - 1. We prove that for all ε > 0, the equation has a ground state solution. The methods used here are based on the Nehari manifold and the concentration-compactness principle. Furthermore, for ε > 0 small, these ground states concentrate at a global minimum point of the least energy function.
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSchrödinger-Poisson equationen_US
dc.subjectNehari manifolden_US
dc.subjectGround statesen_US
dc.subjectConcentration-compactnessen_US
dc.subjectConcentrationen_US
dc.titleExistence and concentration of positive ground states for Schrödinger-Poisson equations with competing potential functionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record