Show simple item record

dc.contributor.authorChhetri, Maya ( Orcid Icon 0000-0002-4822-3217 )
dc.contributor.authorGirg, Petr ( Orcid Icon 0000-0003-0280-6895 )
dc.contributor.authorHollifield, Elliott ( )
dc.date.accessioned2021-10-04T14:30:36Z
dc.date.available2021-10-04T14:30:36Z
dc.date.issued2020-07-28
dc.identifier.citationChhetri, M., Girg, P., & Hollifield, E. (2020). Existence of positive solutions for fractional Laplacian equations: theory and numerical experiments. Electronic Journal of Differential Equations, 2020(81), pp. 1-31.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14588
dc.description.abstractWe consider a class of nonlinear fractional Laplacian problems satisfying the homogeneous Dirichlet condition on the exterior of a bounded domain. We prove the existence of positive weak solution for classes of sublinear nonlinearities including logistic type. A method of sub- and supersolution, without monotone iteration, is established to prove our existence results. We also provide numerical bifurcation diagrams and the profile of positive solutions, corresponding to the theoretical results using the finite element method in one dimension.en_US
dc.formatText
dc.format.extent31 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional Laplacianen_US
dc.subjectSub- and supersolutionen_US
dc.subjectSublinearen_US
dc.subjectLogistic equationen_US
dc.subjectFinite element methoden_US
dc.titleExistence of positive solutions for fractional Laplacian equations: theory and numerical experimentsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record