Show simple item record

dc.contributor.authorHuzak, Renato ( Orcid Icon 0000-0002-3391-7777 )
dc.date.accessioned2021-10-04T17:46:31Z
dc.date.available2021-10-04T17:46:31Z
dc.date.issued2020-09-06
dc.identifier.citationHuzak, R. (2020). Finite cyclicity of the contact point in slow-fast integrable systems of Darboux type. Electronic Journal of Differential Equations, 2020(90), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14597
dc.description.abstractUsing singular perturbation theory and family blow-up we prove that nilpotent contact points in deformations of slow-fast Darboux integrable systems have finite cyclicity. The deformations are smooth or analytic depending on the region in the parameter space. This article is a natural continuation of [1,3], where one studies limit cycles in polynomial deformations of slow-fast Darboux integrable systems, around the "integrable" direction in the parameter space. We extend the existing finite cyclicity result of the contact point to analytic deformations, and under some assumptions we prove that the contact point has finite cyclicity around the "slow-fast" direction in the parameter space.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectBlow-upen_US
dc.subjectCyclicityen_US
dc.subjectDarboux systemsen_US
dc.subjectSingular perturbation theoryen_US
dc.subjectSlow-fast systemsen_US
dc.titleFinite cyclicity of the contact point in slow-fast integrable systems of Darboux typeen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record