Show simple item record

dc.contributor.authorDing, Yuanlin ( )
dc.contributor.authorFeckan, Michal ( Orcid Icon 0000-0002-7385-6737 )
dc.contributor.authorWang, Jinrong ( )
dc.date.accessioned2021-10-11T19:19:50Z
dc.date.available2021-10-11T19:19:50Z
dc.date.issued2020-12-08
dc.identifier.citationDing, Y., Fečkan, M., & Wang, J. (2020). Stability for conformable impulsive differential equations. Electronic Journal of Differential Equations, 2020(118), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14629
dc.description.abstractIn this article, we study impulsive differential equations with conformable derivatives. Firstly, we derive suitable formulas for solving linear impulsive conformable Cauchy problems. Then, we show that the linear problem has asymptotic stability, and the nonlinear problem has generalized Ulam-Hyers-Rassias stability. Also we illustrate our results with examples.en_US
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectConformable derivativeen_US
dc.subjectImpulsive differential equationen_US
dc.subjectAsymptotic stabilityen_US
dc.subjectGeneralized Ulam-Hyers-Rassias stabilityen_US
dc.titleStability for conformable impulsive differential equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record