Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity
dc.contributor.author | Yan, Jianlu ( ) | |
dc.contributor.author | Li, Yuxiang ( ) | |
dc.date.accessioned | 2021-10-11T20:27:03Z | |
dc.date.available | 2021-10-11T20:27:03Z | |
dc.date.issued | 2020-12-16 | |
dc.identifier.citation | Yan, J., & Li, Y. (2020). Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity. Electronic Journal of Differential Equations, 2020(122), pp. 1-14. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/14632 | |
dc.description.abstract | We consider the Keller-Segel system with gradient dependent chemotactic sensitivity ut = Δu - ∇ ∙ (u|∇v|p-2∇v), x ∈ Ω, t > 0, vt = Δv - v + u, x ∈ Ω, t > 0, ∂u/∂v = ∂ν/∂ν = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω in a smooth bounded domain Ω ⊂ ℝn, n ≥ 2. We shown that for all reasonably regular initial data u0 ≥ 0 and v0 ≥ 0, the corresponding Neumann initial-boundary value problem possesses a global weak solution which is uniformly bounded provided that 1 < p n/(n - 1). | |
dc.format | Text | |
dc.format.extent | 14 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Keller-Segel system | en_US |
dc.subject | Weak solution | en_US |
dc.subject | Chemotactic sensitivity | en_US |
dc.title | Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |