Show simple item record

dc.contributor.authorYan, Jianlu ( )
dc.contributor.authorLi, Yuxiang ( )
dc.date.accessioned2021-10-11T20:27:03Z
dc.date.available2021-10-11T20:27:03Z
dc.date.issued2020-12-16
dc.identifier.citationYan, J., & Li, Y. (2020). Existence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivity. Electronic Journal of Differential Equations, 2020(122), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14632
dc.description.abstractWe consider the Keller-Segel system with gradient dependent chemotactic sensitivity ut = Δu - ∇ ∙ (u|∇v|p-2∇v), x ∈ Ω, t > 0, vt = Δv - v + u, x ∈ Ω, t > 0, ∂u/∂v = ∂ν/∂ν = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω in a smooth bounded domain Ω ⊂ ℝn, n ≥ 2. We shown that for all reasonably regular initial data u0 ≥ 0 and v0 ≥ 0, the corresponding Neumann initial-boundary value problem possesses a global weak solution which is uniformly bounded provided that 1 < p n/(n - 1).
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2020, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectKeller-Segel systemen_US
dc.subjectWeak solutionen_US
dc.subjectChemotactic sensitivityen_US
dc.titleExistence and boundedness of solutions for a Keller-Segel system with gradient dependent chemotactic sensitivityen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record