Show simple item record

dc.contributor.authorde Albuquerque, Jose Carlos ( )
dc.contributor.authorClemente, Rodrigo ( Orcid Icon 0000-0001-9941-8199 )
dc.contributor.authorFerraz, Diego ( Orcid Icon 0000-0002-8605-0046 )
dc.date.accessioned2021-10-15T13:28:40Z
dc.date.available2021-10-15T13:28:40Z
dc.date.issued2019-01-25
dc.identifier.citationde Albuquerque, J. C., Clemente, R., & Ferraz, D. (2019). Existence of infinitely many small solutions for sublinear fractional Kirchhoff-Schrodinger-Poisson systems. Electronic Journal of Differential Equations, 2019(13), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14656
dc.description.abstract

We study the Kirchhoff-Schrödinger-Poisson system

m([u]2α) (-Δ)α u + V(x)u + k(x)φu = ƒ(x, u), x ∈ ℝ3,
(-Δ)β φ = k(x)u2, x ∈ ℝ3,

where [∙]α denotes the Gagliardo semi-norm, (-Δ)α denotes the fractional Laplacian operator with α, β ∈ (0, 1], 4α + 2β ≥ 3 and m : [0, +∞) → [0, +∞) is a Kirchhoff function satisfying suitable assumptions. The functions V(x) and k(x) are nonnegative and the nonlinear term ƒ(x, s) satisfies certain local conditions. By using a variational approach, we use a Kajikiya's version of the symmetric mountain pass lemma and Moser iteration method to prove the existence of infinitely many small solutions.

dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectKirchhoff-Schrödinger-Poisson equationen_US
dc.subjectFractional Laplacianen_US
dc.subjectVariational methoden_US
dc.titleExistence of infinitely many small solutions for sublinear fractional Kirchhoff-Schrodinger-Poisson systemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record