Fast homoclinic solutions for damped vibration systems with subquadratic and asymptotically quadratic potentials
Abstract
In this article, we study the nonperiodic damped vibration problem
ü(t) + q(t)u̇(t) - L(t)u(t) + ∇W(t, u(t)) = 0,
where L(t) is uniformly positive definite for all t ∈ ℝ, and W(t, x) is either subquadratic or asymptotically quadratic in x as |x| → ∞. Based on the minimax method in critical point theory, we prove the existence and multiplicity of fast homoclinic solutions for the above problem.
Citation
Ye, Y. (2019). Fast homoclinic solutions for damped vibration systems with subquadratic and asymptotically quadratic potentials. Electronic Journal of Differential Equations, 2019(43), pp. 1-17.Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.