Show simple item record

dc.contributor.authorYe, Yiwei ( Orcid Icon 0000-0002-1227-1241 )
dc.date.accessioned2021-11-05T14:57:11Z
dc.date.available2021-11-05T14:57:11Z
dc.date.issued2019-03-22
dc.identifier.citationYe, Y. (2019). Fast homoclinic solutions for damped vibration systems with subquadratic and asymptotically quadratic potentials. Electronic Journal of Differential Equations, 2019(43), pp. 1-17.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14776
dc.description.abstractIn this article, we study the nonperiodic damped vibration problem ü(t) + q(t)u̇(t) - L(t)u(t) + ∇W(t, u(t)) = 0, where L(t) is uniformly positive definite for all t ∈ ℝ, and W(t, x) is either subquadratic or asymptotically quadratic in x as |x| → ∞. Based on the minimax method in critical point theory, we prove the existence and multiplicity of fast homoclinic solutions for the above problem.
dc.formatText
dc.format.extent17 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFast homoclinic solutionsen_US
dc.subjectDamped vibration problemen_US
dc.subjectSubquadraticen_US
dc.subjectAsymptotically quadraticen_US
dc.titleFast homoclinic solutions for damped vibration systems with subquadratic and asymptotically quadratic potentialsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record