Show simple item record

dc.contributor.authorNascimento, Marcelo J. D. ( )
dc.contributor.authorBezerra, Flank ( Orcid Icon 0000-0002-8937-4193 )
dc.date.accessioned2021-11-29T15:54:19Z
dc.date.available2021-11-29T15:54:19Z
dc.date.issued2019-05-17
dc.identifier.citationNascimento, M. J. D., & Bezerra, F. D. M. (2019). Non-autonomous approximations governed by the fractional powers of damped wave operators. Electronic Journal of Differential Equations, 2019(72), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14960
dc.description.abstractIn this article we study non-autonomous approximations governed by the fractional powers of damped wave operators of order α ∈ (0, 1) subject to Dirichlet boundary conditions in an n-dimensional bounded domain with smooth boundary. We give explicitly expressions for the fractional powers of the wave operator, we compute their resolvent operators and their eigenvalues. Moreover, we study the convergence as α ↗ 1 with rate 1 - α.
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectNon-autonomous damped wave equationsen_US
dc.subjectFractional powersen_US
dc.subjectRate of convergenceen_US
dc.subjectEigenvaluesen_US
dc.titleNon-autonomous approximations governed by the fractional powers of damped wave operatorsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record