Show simple item record

dc.contributor.authorFrassu, Silvia ( Orcid Icon 0000-0002-3701-4073 )
dc.contributor.authorRocha, Eugenio M. ( Orcid Icon 0000-0003-3628-6795 )
dc.contributor.authorStaicu, Vasile ( Orcid Icon 0000-0002-4776-5022 )
dc.date.accessioned2021-11-29T16:32:21Z
dc.date.available2021-11-29T16:32:21Z
dc.date.issued2019-05-31
dc.identifier.citationFrassu, S., Rocha, E. M., & Staicu, V. (2019). Three nontrivial solutions for nonlocal anisotropic inclusions under nonresonance. Electronic Journal of Differential Equations, 2019(75), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14963
dc.description.abstractIn this article, we study a pseudo-differential inclusion driven by a nonlocal anisotropic operator and a Clarke generalized subdifferential of a nonsmooth potential, which satisfies nonresonance conditions both at the origin and at infinity. We prove the existence of three nontrivial solutions: one positive, one negative and one of unknown sign, using variational methods based on nosmooth critical point theory, more precisely applying the second deformation theorem and spectral theory. Here, a nosmooth anisotropic version of the Holder versus Sobolev minimizers relation play an important role.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectIntegrodifferential operatorsen_US
dc.subjectDifferential inclusionsen_US
dc.subjectNonsmooth analysisen_US
dc.subjectCritical point theoryen_US
dc.titleThree nontrivial solutions for nonlocal anisotropic inclusions under nonresonanceen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record