Show simple item record

dc.contributor.authorChen, Wenping ( )
dc.contributor.authorLu, Shujuan ( )
dc.contributor.authorChen, Hu ( )
dc.contributor.authorLiu, Haiyu ( )
dc.date.accessioned2021-11-29T16:47:44Z
dc.date.available2021-11-29T16:47:44Z
dc.date.issued2019-05-31
dc.identifier.citationChen, W., Lu, S., Chen, H., & Liu, H. (2019). Crank-Nicolson Legendre spectral approximation for space-fractional Allen-Cahn equation. Electronic Journal of Differential Equations, 2019(76), pp. 1-17.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14964
dc.description.abstractIn this article, we consider spectral methods for solving the initial-boundary value problem of the space fractional-order Allen-Cahn equation. A fully discrete scheme based on the modified Crank-Nicolson scheme in time and the Legendre spectral method in space is established. The existence and uniqueness of the fully discrete scheme are derived, and the stability and convergence analysis of the fully discrete scheme are proved rigorously. By constructing a fractional duality argument, the corresponding optimal error estimates in L2 and Hα norm are derived, respectively. Also, numerical experiments are performed to support the theoretical results.
dc.formatText
dc.format.extent17 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSpace-fractional Allen-Cahn equationen_US
dc.subjectLegendre spectral methoden_US
dc.subjectModified Crank-Nicolson schemeen_US
dc.subjectStabilityen_US
dc.subjectConvergenceen_US
dc.titleCrank-Nicolson Legendre spectral approximation for space-fractional Allen-Cahn equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record