Show simple item record

dc.contributor.authorJia, Lueling ( )
dc.contributor.authorChen, Huanzhen ( )
dc.contributor.authorErvin, Vincent J. ( )
dc.date.accessioned2021-12-01T15:56:30Z
dc.date.available2021-12-01T15:56:30Z
dc.date.issued2019-07-26
dc.identifier.citationJia, L., Chen, H., & Ervin, V. J. (2019). Existence and regularity of solutions to 1-D fractional order diffusion equations. Electronic Journal of Differential Equations, 2019(93), pp. 1-21.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14981
dc.description.abstractIn this article we investigate the existence and regularity of 1-D steady state fractional order diffusion equations. Two models are investigated: the Riemann-Liouville fractional diffusion equation, and the Riemann-Liouville-Caputo fractional diffusion equation. For these models we explicitly show how the regularity of the solution depends upon the right hand side function. We also establish for which Dirichlet and Neumann boundary conditions the models are well posed.en_US
dc.formatText
dc.format.extent21 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional diffusion equationen_US
dc.subjectExistenceen_US
dc.subjectRegularityen_US
dc.subjectSpectral methoden_US
dc.titleExistence and regularity of solutions to 1-D fractional order diffusion equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record