Show simple item record

dc.contributor.authorEloe, Paul W. ( Orcid Icon 0000-0002-6590-9931 )
dc.contributor.authorNeugebauer, Jeffrey T. ( )
dc.date.accessioned2021-12-01T21:28:14Z
dc.date.available2021-12-01T21:28:14Z
dc.date.issued2019-08-13
dc.identifier.citationEloe, P. W., & Neugebauer, J. T. (2019). Avery fixed point theorem applied to Hammerstein integral equations. Electronic Journal of Differential Equations, 2019(99), pp. 1-20.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14990
dc.description.abstract

We apply a recent Avery et al. fixed point theorem to the Hammerstein integral equation

x(t) = ∫T2T1 G(t, s)ƒ(x(s)) ds, t ∈ [T1, T2].

Under certain conditions on G, we show the existence of positive and positive symmetric solutions. Examples are given where G is a convolution kernel and where G is a Green's function associated with different boundary-value problem.

dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectHammerstein integral equationen_US
dc.subjectBoundary-value problemen_US
dc.subjectFractional boundary-value problemen_US
dc.titleAvery fixed point theorem applied to Hammerstein integral equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record