Show simple item record

dc.contributor.authorWang, Bingjun ( )
dc.contributor.authorGao, Hongjun ( Orcid Icon 0000-0002-5111-1179 )
dc.date.accessioned2021-12-06T19:17:57Z
dc.date.available2021-12-06T19:17:57Z
dc.date.issued2019-11-15
dc.identifier.citationWang, B., & Gao, H. (2019). Neutral stochastic partial functional integro-differential equations driven by G-Brownian motion. Electronic Journal of Differential Equations, 2019(119), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15014
dc.description.abstractIn this article, we define the Hilbert-valued stochastic calculus with respect to G-Brownian motion in G-framework. On that basis, we prove the existence and uniqueness of mild solution for a class of neutral stochastic partial functional integro-differential equations driven by G-Brownian motion with non-Lipschitz coefficients. Our results are established by means of the Picard approximation. Moreover, we establish the stability of mild solution. An example is given to illustrate the theory.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectNeutral equationen_US
dc.subjectG-Brownian motionen_US
dc.subjectMild solutionen_US
dc.subjectStabilityen_US
dc.titleNeutral stochastic partial functional integro-differential equations driven by G-Brownian motionen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record