Show simple item record

dc.contributor.authorHe, Ze-Rong ( )
dc.contributor.authorNi, Dongdong ( )
dc.contributor.authorWang, Shuping ( )
dc.date.accessioned2021-12-06T20:48:43Z
dc.date.available2021-12-06T20:48:43Z
dc.date.issued2019-11-21
dc.identifier.citationHe, Z. R., Ni, D., & Wang, S. (2019). Existence and stability of steady states for hierarchical age-structured population models. Electronic Journal of Differential Equations, 2019(124), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15018
dc.description.abstractThis article concerns the stability of equilibria of a hierarchical age-structured population system. We establish the existence of positive steady states via a fixed point result. Also we derive some criteria from the model parameters for asymptotical stability or instability, by means of spectrum and semigroups of linear operators. In addition, we present some numerical experiments.en_US
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectHierarchy of ageen_US
dc.subjectPopulation systemen_US
dc.subjectSteady statesen_US
dc.subjectStabilityen_US
dc.subjectSemigroup of operatorsen_US
dc.titleExistence and stability of steady states for hierarchical age-structured population modelsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record