Show simple item record

dc.contributor.authorYang, Miaomiao ( )
dc.contributor.authorFu, Yongqiang ( Orcid Icon 0000-0002-3755-5320 )
dc.date.accessioned2022-02-09T18:37:08Z
dc.date.available2022-02-09T18:37:08Z
dc.date.issued2018-05-10
dc.identifier.citationYang, M., & Fu, Y. (2018). Existence of weak solutions for quasilinear parabolic systems in divergence form with variable growth. Electronic Journal of Differential Equations, 2018(113), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15306
dc.description.abstractIn this article we study the existence of weak solutions for quasilinear parabolic system in divergence form with variable growth. By means of Young measures, Galerkin's approximation method and the theory of variable exponents spaces, we obtain the existence of weak solutions.en_US
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectVariable exponenten_US
dc.subjectYoung measuresen_US
dc.subjectWeak solutionsen_US
dc.subjectQuasilinear parabolic systemen_US
dc.subjectGalerkin's approximationen_US
dc.titleExistence of weak solutions for quasilinear parabolic systems in divergence form with variable growthen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record