Show simple item record

dc.contributor.authorIannizzotto, Antonio ( Orcid Icon 0000-0002-8505-3085 )
dc.contributor.authorRocha, Eugenio M. ( Orcid Icon 0000-0003-3628-6795 )
dc.contributor.authorSantos, Sandrina ( Orcid Icon 0000-0003-3380-5422 )
dc.date.accessioned2022-02-14T18:15:51Z
dc.date.available2022-02-14T18:15:51Z
dc.date.issued2018-06-15
dc.identifier.citationIannizzotto, A., Rocha, E. M., & Santos, S. (2018). Two solutions for fractional p-Laplacian inclusions under nonresonance. Electronic Journal of Differential Equations, 2018(122), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15322
dc.description.abstractWe study a pseudo-differential inclusion driven by the fractional p-Laplacian operator and involving a nonsmooth potential, which satisfies nonresonance conditions both at the origin and at infinity. Using variational methods based on nonsmooth critical point theory (Clarke's subdifferential), we establish existence of at least two constant sign solutions (one positive, the other negative), enjoying Holder regularity.en_US
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional p-Laplacianen_US
dc.subjectDifferential inclusionen_US
dc.subjectNonsmooth analysisen_US
dc.subjectCritical point theoryen_US
dc.titleTwo solutions for fractional p-Laplacian inclusions under nonresonanceen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record