Show simple item record

dc.contributor.authorZheng, Bo-wen ( )
dc.date.accessioned2022-02-16T18:27:44Z
dc.date.available2022-02-16T18:27:44Z
dc.date.issued2018-07-03
dc.identifier.citationZheng, B. W. (2018). Maximal estimates for fractional Schrödinger equations with spatial variable coefficient. Electronic Journal of Differential Equations, 2018(139), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15339
dc.description.abstractLet v(r, t) = Ttv0(r) be the solution to a fractional Schrödinger equation where the coefficient of Laplacian depends on the spatial variable. We prove some weighted Lq estimates for the maximal operator generated by Tt with initial data in a Sobolev-type space.
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectSchrödinger equation with spatial variable coefficienten_US
dc.subjectMaximal estimateen_US
dc.subjectHankel-Sobolev spaceen_US
dc.titleMaximal estimates for fractional Schrödinger equations with spatial variable coefficienten_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record