Maximal estimates for fractional Schrödinger equations with spatial variable coefficient
dc.contributor.author | Zheng, Bo-wen ( ) | |
dc.date.accessioned | 2022-02-16T18:27:44Z | |
dc.date.available | 2022-02-16T18:27:44Z | |
dc.date.issued | 2018-07-03 | |
dc.identifier.citation | Zheng, B. W. (2018). Maximal estimates for fractional Schrödinger equations with spatial variable coefficient. Electronic Journal of Differential Equations, 2018(139), pp. 1-13. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/15339 | |
dc.description.abstract | Let v(r, t) = Ttv0(r) be the solution to a fractional Schrödinger equation where the coefficient of Laplacian depends on the spatial variable. We prove some weighted Lq estimates for the maximal operator generated by Tt with initial data in a Sobolev-type space. | |
dc.format | Text | |
dc.format.extent | 13 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Schrödinger equation with spatial variable coefficient | en_US |
dc.subject | Maximal estimate | en_US |
dc.subject | Hankel-Sobolev space | en_US |
dc.title | Maximal estimates for fractional Schrödinger equations with spatial variable coefficient | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |