Show simple item record

dc.contributor.authorAl Saud, Huda ( )
dc.contributor.authorHajaiej, Hichem ( )
dc.date.accessioned2022-02-16T18:46:42Z
dc.date.available2022-02-16T18:46:42Z
dc.date.issued2018-07-08
dc.identifier.citationAl Saud, H., & Hajaiej, H. (2018). Existence of minimizers of multi-constrained variational problems for product functions. Electronic Journal of Differential Equations, 2018(140), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15340
dc.description.abstractWe prove the existence of minimizers of a class of multi-constrained variational problems in which the non linearity involved is a product function not satisfying compactness, monotonicity, neither symmetry properties. Our result cannot be covered by previous studies that considered only a particular class of integrands. A key step is establishing the strict sub-additivity condition in the vectorial setting. This inequality is also interesting in itself.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectMulti-constraineden_US
dc.subjectVariationalen_US
dc.subjectElliptic systemsen_US
dc.subjectNon-compacten_US
dc.titleExistence of minimizers of multi-constrained variational problems for product functionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record