Show simple item record

dc.contributor.authorChatzarakis, George ( Orcid Icon 0000-0002-0477-1895 )
dc.contributor.authorHorvat Dmitrovic, Lana ( Orcid Icon 0000-0003-1665-2292 )
dc.contributor.authorPasic, Mervan ( Orcid Icon 0000-0002-7609-3528 )
dc.date.accessioned2022-03-07T17:29:55Z
dc.date.available2022-03-07T17:29:55Z
dc.date.issued2018-08-31
dc.identifier.citationChatzarakis, G. E., Horvat Dmitrović, L., & Pasic, M. (2018). Local extrema of positive solutions of nonlinear functional differential equations. Electronic Journal of Differential Equations, 2018(158), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15452
dc.description.abstractWe study the positive solutions of a general class of second-order functional differential equations, which includes delay, advanced, and delay-advanced equations. We establish integral conditions on the coefficients on a given bounded interval J such that every positive solution has a local maximum in J. Then, we use the connection between that integral condition and Rayleigh quotient to get a sufficient condition that is easier to be applied. Several examples are provided to demonstrate the importance of our results.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFunctional differential equationsen_US
dc.subjectLocal non-monotonicityen_US
dc.subjectIntegral criteriaen_US
dc.subjectRayleigh quotienten_US
dc.subjectDelayen_US
dc.subjectAdvanceen_US
dc.subjectSuper-sub linear nonlinearityen_US
dc.titleLocal extrema of positive solutions of nonlinear functional differential equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record