Show simple item record

dc.contributor.authorLu, Liqing ( )
dc.contributor.authorZhao, Liyan ( )
dc.contributor.authorHu, Jing ( )
dc.date.accessioned2022-03-10T17:04:42Z
dc.date.available2022-03-10T17:04:42Z
dc.date.issued2018-11-19
dc.identifier.citationLu, L., Zhao, L., & Hu, J. (2018). Effect of Kelvin-Voigt damping on spectrum analysis of a wave equation. Electronic Journal of Differential Equations, 2018(186), pp. 1-16.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15482
dc.description.abstractThis article concerns a one-dimensional wave equation with a small amount of Kelvin-Voigt damping. We give a detailed spectrum analysis of the system operator, from which we show that the generalized eigenfunction forms a Riesz basis for the state Hilbert space. That is, the precise and explicit expression of the eigenvalues is deduced and the spectrum-determined growth condition is established. Hence the exponential stability of the system is obtained.en_US
dc.formatText
dc.format.extent16 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectWave equationen_US
dc.subjectRiesz basisen_US
dc.subjectSpectrum-determined growth conditionen_US
dc.subjectKelvin-Voigt dampingen_US
dc.titleEffect of Kelvin-Voigt damping on spectrum analysis of a wave equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record