Existence of solutions to perturbed fractional Nirenberg problems
dc.contributor.author | Abdelhedi, Wael ( ) | |
dc.contributor.author | Alhemedan, Suad ( ) | |
dc.contributor.author | Chtioui, Hichem ( ) | |
dc.contributor.author | Hajaiej, Hichem ( ) | |
dc.contributor.author | Markowich, Peter ( ) | |
dc.date.accessioned | 2022-03-16T20:44:37Z | |
dc.date.available | 2022-03-16T20:44:37Z | |
dc.date.issued | 2017-01-12 | |
dc.identifier.citation | Abdelhedi, W., Alhemedan, S., Chtioui, H., Hajaiej, H., & Markowich, P. A. (2017). Existence of solutions to perturbed fractional Nirenberg problems. Electronic Journal of Differential Equations, 2017(14), pp. 1-16. | en_US |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/15519 | |
dc.description.abstract | In this article we study a fractional Nirenberg problem with a small perturbation of a constant. Under a flatness assumption around the critical points, we prove an existence result in terms of Euler-Hopf index. Our method hinges on a revisited version of the celebrated critical points at infinity approach which goes back to Bahri. | en_US |
dc.format | Text | |
dc.format.extent | 16 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas. | |
dc.subject | Fractional Laplacian | en_US |
dc.subject | Critical exponent | en_US |
dc.subject | Sigma-curvature | en_US |
dc.subject | Critical points at infinity | en_US |
dc.title | Existence of solutions to perturbed fractional Nirenberg problems | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. |