Show simple item record

dc.contributor.authorHeidarkhani, Shapour ( Orcid Icon 0000-0002-7908-8388 )
dc.contributor.authorAfrouzi, Ghasem Alizadeh ( Orcid Icon 0000-0001-8794-3594 )
dc.contributor.authorMoradi, Shahin ( )
dc.contributor.authorCaristi, Giuseppe ( Orcid Icon 0000-0003-1953-5198 )
dc.date.accessioned2022-03-21T16:15:24Z
dc.date.available2022-03-21T16:15:24Z
dc.date.issued2017-01-23
dc.identifier.citationHeidarkhani, S., Afrouzi, G. A., Moradi, S., & Caristi, G. (2017). A variational approach for solving p(x)-biharmonic equations with Navier boundary conditions. Electronic Journal of Differential Equations, 2017(25), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15530
dc.description.abstractIn this article, we show the existence of at least three weak solutions for p(x)-biharmonic equations with Navier boundary conditions. The proof of the main result is based on variational methods. We also provide an example to illustrate our results.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectp(x)-Laplace operatoren_US
dc.subjectVariable exponent Sobolev spacesen_US
dc.subjectVariational methoden_US
dc.subjectCritical point theoryen_US
dc.titleA variational approach for solving p(x)-biharmonic equations with Navier boundary conditionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record