Show simple item record

dc.contributor.authorRoscani, Sabrina ( Orcid Icon 0000-0002-9885-2740 )
dc.date.accessioned2022-03-28T17:11:26Z
dc.date.available2022-03-28T17:11:26Z
dc.date.issued2017-02-14
dc.identifier.citationRoscani, S. D. (2017). Moving-boundary problems for the time-fractional diffusion equation. Electronic Journal of Differential Equations, 2017(44), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15568
dc.description.abstractWe consider a one-dimensional moving-boundary problem for the time-fractional diffusion equation. The time-fractional derivative of order α ∈ (0, 1) is taken in the sense of Caputo. We study the asymptotic behavior, as t tends to infinity, of a general solution by using a fractional weak maximum principle. Also, we give some particular exact solutions in terms of Wright functions.
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional diffusion equationen_US
dc.subjectCaputo derivativeen_US
dc.subjectMoving-boundary problemen_US
dc.subjectMaximum principleen_US
dc.subjectAsymptotic behaivoren_US
dc.titleMoving-boundary problems for the time-fractional diffusion equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record