Show simple item record

dc.contributor.authorWang, Tao ( )
dc.date.accessioned2022-03-30T18:14:25Z
dc.date.available2022-03-30T18:14:25Z
dc.date.issued2017-02-21
dc.identifier.citationWang, T. (2017). Ground state solutions for Choquard type equations with a singular potential. Electronic Journal of Differential Equations, 2017(52), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15578
dc.description.abstract

This article concerns the Choquard type equation

-∆u + V(x)u = (∫N |u(y)|p/ |x-y|N-α dy) |u|p-2u, x ∈ ℝN,

where N ≥ 3, α ∈ ((N - 4)+, N), 2 ≤ p < (N + α)/(N - 2) and V(x) is a possibly singular potential and may be unbounded below. Applying a variant of the Lions' concentration-compactness principle, we prove the existence of ground state solution of the above equations.

dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectChoquard equationen_US
dc.subjectSingular potentialen_US
dc.subjectGround state solutionen_US
dc.subjectLions' concentration-compactness principleen_US
dc.titleGround state solutions for Choquard type equations with a singular potentialen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record