Show simple item record

dc.contributor.authorEl Baraka, Azzeddine ( Orcid Icon 0000-0002-1161-947X )
dc.contributor.authorToumlilin, Mohamed ( )
dc.date.accessioned2022-04-01T17:24:00Z
dc.date.available2022-04-01T17:24:00Z
dc.date.issued2017-03-04
dc.identifier.citationEl Baraka, A., & Toumlilin, M. (2017). Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces. Electronic Journal of Differential Equations, 2017(65), pp. 1-20.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15591
dc.description.abstractThis article concerns the Cauchy problem of the 3D generalized incompressible magneto-hydrodynamic (GMHD) equations. By using the Fourier localization argument and the Littlewood-Paley theory as in [5,31], we obtain global well-posedness results of the GMHD equations with small initial data belonging to the critical Fourier-Besov-Morrey spaces. Moreover, we prove that the corresponding global solution decays to zero as time approaches infinity.en_US
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectMagneto-hydrodynamic equationsen_US
dc.subjectGlobal well-posednessen_US
dc.subjectFourier-Besov-Morrey spaceen_US
dc.titleGlobal well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spacesen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record