Show simple item record

dc.contributor.authorKarakostas, George L. ( Orcid Icon 0000-0002-1230-7128 )
dc.contributor.authorPurnaras, Ioannis K. ( )
dc.date.accessioned2023-05-25T12:54:19Z
dc.date.available2023-05-25T12:54:19Z
dc.date.issued2016-01-04
dc.identifier.citationKarakostas, G. L., & Purnaras, I. K. (2016). Singular regularization of operator equations in L1 spaces via fractional differential equations. Electronic Journal of Differential Equations, 2016(01), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/16873
dc.description.abstractAn abstract causal operator equation y=Ay defined on a space of the form L1([0,τ],X), with X a Banach space, is regularized by the fractional differential equation ε(Dα0yε)(t) = -yε(t) + (Ayε)(t), t ∈ [0,τ], where Dα0 denotes the (left) Riemann-Liouville derivative of order α ∈ (0,1). The main procedure lies on properties of the Mittag-Leffler function combined with some facts from convolution theory. Our results complete relative ones that have appeared in the literature; see, e.g. [5] in which regularization via ordinary differential equations is used.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2016, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectCausal operator equationsen_US
dc.subjectFractional differential equationsen_US
dc.subjectRegularizationen_US
dc.subjectBanach spaceen_US
dc.titleSingular regularization of operator equations in L1 spaces via fractional differential equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record