Show simple item record

dc.contributor.authorPadhi, Seshadev ( )en_US
dc.contributor.authorSrivastava, Shilpee ( )en_US
dc.contributor.authorDix, Julio G. ( )en_US
dc.date.accessioned2009-02-13T19:03:53Z
dc.date.available2012-02-24T10:17:56Z
dc.date.issued2009-01en_US
dc.identifier.citationPadhi, S., & Srivastava, S. (2009). Existence of three nonnegative periodic solutions for functional differential equations and applications to hematopoiesis. Pan American Mathematical Journal, 19(1), pp. 27-36.
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/3822
dc.description.abstractUsing the Leggett-Wiliams fixed point theorem, we show the existence of at least three solutions to a system of first-order nonlinear functional differential equations. These solutions have non-negative components which makes them suitable for hematopoiesis models.en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoen
dc.publisherThe University of Central Florida
dc.sourcePan American Mathematical Journal, 2009, Vol. 19, Issue 1, pp. 27-36.
dc.subjectPeriodic solutionsen_US
dc.subjectFunctional differential equationen_US
dc.subject.classificationOrdinary Differential Equations and Applied Dynamicsen_US
dc.titleExistence of Three Nonnegative Periodic Solutions for Functional Differential Equations and Applications to Hematopoiesisen_US
dc.typepublishedVersion
txstate.documenttypeArticle
txstate.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record