Temperature Programmed Desorption of Graphene Oxide Under Ultra-High Vacuum
Abstract
Graphene oxide is an electrical insulator that shows potential for use in nanoscale electronic devices. An understanding of the thermal stability of graphene oxide sheets is important since the electrical, chemical, and mechanical properties of graphene oxide will change as it is reduced at elevated temperatures. In this
study, graphene oxide films were grown by deposition of an aqueous solution of graphene oxide onto oxygen plasma cleaned silicon nitride on silicon substrates. The thermal stability of these films was studied by temperature programmed desorption under ultra-high vacuum conditions. The primary decomposition components of the films are H2O, CO2, and CO.