Show simple item record

dc.contributor.authorTreinen, Ray
dc.contributor.authorBagley, Zachary
dc.date.accessioned2016-08-22T19:03:53Z
dc.date.available2016-08-22T19:03:53Z
dc.date.issued2016-08-17
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/6260
dc.description.abstractWe consider the symmetric solutions to the Young-Laplace equation, and its extensions past vertical points. We provide a classification of all symmetric solutions using certain families of parameters. This classification produces a unified approach to fluid interfaces in capillary tubes, sessile and pendent drops, liquid bridges, as well as exterior and annular capillary surfaces. The generating curves for symmetric solutions have asymptotes for large arclengths, and the behavior of these asymptotes is analyzed.en_US
dc.formatText
dc.format.extent21 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTaylor & Francis
dc.sourceExperimental Mathematics, 2016. New York, NY: Taylor & Francis, pp. 1-15.
dc.subjectSymmetric solutionsen_US
dc.subjectCapillary tubesen_US
dc.subjectSessile and pendent dropsen_US
dc.subjectLiquid bridgesen_US
dc.subjectAsymptotic behavioren_US
dc.titleOn the classification and asymptotic behavior of the symmetric capillary surfacesen_US
txstate.documenttypeArticleen_US
dc.identifier.doihttps://doi.org/10.1080/10586458.2016.1245641
txstate.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record