Show simple item record

dc.contributor.authorEvans, Lawrence C. ( )
dc.date.accessioned2018-08-16T19:04:05Z
dc.date.available2018-08-16T19:04:05Z
dc.date.issued1993-10-12
dc.identifier.citationEvans, L. C. (1993). Estimates for smooth absolutely minimizing Lipschitz extensions. Electronic Journal of Differential Equations, 1993(03), pp. 1-9.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7537
dc.description.abstractI present some elementary maximum principle arguments, estab- lishing interior gradient bounds and Harnack inequalities for both u and |Du|, where u is a smooth solution of the degenerate elliptic PDE ∆∞u = 0. These calculations in particular extend to higher dimensions G. Aronsson’s assertion [2] that a nonconstant, smooth solution can have no interior critical point.en_US
dc.formatText
dc.format.extent9 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1993, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectLipschitz extensionsen_US
dc.subjectHarnack inequalitiesen_US
dc.titleEstimates for smooth absolutely minimizing Lipschitz extensionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record