Show simple item record

dc.contributor.authorMayer, Uwe F. ( )
dc.date.accessioned2018-08-17T14:43:31Z
dc.date.available2018-08-17T14:43:31Z
dc.date.issued1993-12-13
dc.identifier.citationMayer, U. F. (1993). One-sided Mullins-Sekerka Flow Does Not Preserve Convexity. Electronic Journal of Differential Equations, 1993(08), pp. 1-7.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7540
dc.description.abstractThe Mullins-Sekerka model is a nonlocal evolution model for hyper-surfaces, which arises as a singular limit for the Cahn-Hilliard equation. Assuming the existence of sufficiently smooth solutions we will show that the one-sided Mullins-Sekerka flow does not preserve convexity.en_US
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1993, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectMullins-Sekerka flowen_US
dc.subjectHele-Shaw flowen_US
dc.subjectCahn-Hilliard equationen_US
dc.subjectFree boundary problemen_US
dc.subjectConvexityen_US
dc.subjectCurvatureen_US
dc.titleOne-sided Mullins-Sekerka Flow Does Not Preserve Convexityen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record