Show simple item record

dc.contributor.authorAllegretto, Walter ( )
dc.contributor.authorSiegel, David ( )
dc.date.accessioned2018-08-21T16:58:28Z
dc.date.available2018-08-21T16:58:28Z
dc.date.issued1995-10-06
dc.identifier.citationAllegretto, W. & Siegel, D. (1995). Picone's identity and the moving plan procedure. Electronic Journal of Differential Equations, 1995(14), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7568
dc.description.abstractPositive solutions of a class of nonlinear elliptic partial differential equations are shown to be symmetric by means of the moving plane argument coupled with Spectral Theory results and Picone's Identity. The method adapts easily to situations where the moving plane procedure gives rise to variational problems with positive eigenfunctions.en_US
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1995, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSymmetryen_US
dc.subjectPositive solutionsen_US
dc.subjectNonlinear ellipticen_US
dc.subjectMoving planeen_US
dc.subjectSpectral Theoryen_US
dc.subjectPicone's Identityen_US
dc.titlePicone's Identity and the Moving Plan Procedureen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record