Show simple item record

dc.contributor.authorAmano, Kazuo ( )
dc.date.accessioned2018-08-21T17:08:28Z
dc.date.available2018-08-21T17:08:28Z
dc.date.issued1995-10-20
dc.identifier.citationAmano, K. (1995). Approximate general solution of degenerate parabolic equations related to population genetics. Electronic Journal of Differential Equations, 1995(15), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7569
dc.description.abstractThe author constructs an approximate general solution to a degenerate parabolic equation related to population genetics and implements a computational procedure. The result gives a theoretical foundation to the computer algebraic approach for degenerate partial differential equations and introduces a new numerical symbolic hybrid method. The techniques are likely to have wide applicability, since the key idea of the algorithm is a rearrangement of the finite difference method.en_US
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1995, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectDegenerate parabolicen_US
dc.subjectNumerical-symbolic methoden_US
dc.titleApproximate General Solution of Degenerate Parabolic Equations Related to Population Geneticsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record