Show simple item record

dc.contributor.authorAvis, Rafael ( )
dc.contributor.authorNaulin, Raul ( )
dc.date.accessioned2018-08-28T16:28:00Z
dc.date.available2018-08-28T16:28:00Z
dc.date.issued1997-10-15
dc.identifier.citationAvis, R. & Naulin, R. (1997). Asymptotic instability of nonlinear differential equations. Electronic Journal of Differential Equations, 1997(16), pp. 1-7.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7638
dc.description.abstract

This article shows that the zero solution to the system

x' = A(t)x + ƒ(t, x),	ƒ(t, 0) = 0

is unstable. To show instability, we impose conditions on the nonlinear part ƒ(t, x) and on the fundamental matrix of the linear system y' = A(t)y. Our results generalize the instability results obtained by J. M. Bownds, Hatvani-Pintér, and K. L. Chiou.

en_US
dc.formatText
dc.format.extent7 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1997, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectLiapunov instabilityen_US
dc.subjecth-Stabilityen_US
dc.titleAsymptotic Instability of Nonlinear Differential Equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record