Show simple item record

dc.contributor.authorBoldrini, Jose Luiz
dc.contributor.authorCrema, Janete
dc.date.accessioned2018-11-15T21:33:15Z
dc.date.available2018-11-15T21:33:15Z
dc.date.issued1998-05-30
dc.date.submitted1998-03-11
dc.identifier.citationBoldrini, J. L. & Crema, J. (1998). On forced periodic solutions of superlinear quasi-parabolic problems. "Electronic Journal of Differential Equations," No. 14, pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7792
dc.description.abstractWe study the existence of periodic solutions for a class of quasi-parabolic equations involving the p-Laplacian (or any other nonlinear operators of similar class) perturbed by nonlinear terms and forced by rather irregular periodic in time excitations (including what we call abrupt changes). These equations may model problems for which, aside from the presence of the kind of nonlinear dissipation associated to the p-Laplacian, other nonlinear and not necessarily dissipative mechanisms occur. We look for boundedness conditions on these periodic excitations and nonlinear perturbations sufficient to guarantee the existence of periodic responses (solutions) of the same period.en_US
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1998, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectQuasi-parabolic equationsen_US
dc.subjectPeriodic solutionsen_US
dc.subjectp-Laplacianen_US
dc.titleOn Forced Periodic Solutions of Superlinear Quasi-parabolic Problemsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License [https://creativecommons.org/licenses/by/4.0/]


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record