Show simple item record

dc.contributor.authorKawanago, Tadashi ( )
dc.date.accessioned2019-03-19T20:37:38Z
dc.date.available2019-03-19T20:37:38Z
dc.date.issued1998-06-03
dc.identifier.citationKawanago, T. (1998). Stability estimate for strong solutions of the Navier-Stokes system and its applications. Electronic Journal of Differential Equations, 1998(15), pp. 1-23.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7935
dc.description.abstractWe obtain a `stability estimate' for strong solutions of the Navier-Stokes system, which is an Lα-version, 1 < α < ∞, of the estimate that Serrin [Se] used in obtaining uniqueness of weak solutions to the Navier-Stokes system. By applying this estimate, we obtain new results in stability and uniqueness of solutions, and non-blowup conditions for strong solutions.en_US
dc.formatText
dc.format.extent23 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1998, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectNavier-Stokes systemen_US
dc.subjectStrong solutionsen_US
dc.subjectStabilityen_US
dc.subjectUniquenessen_US
dc.subjectNon-blowup conditionen_US
dc.titleStability Estimate for Strong Solutions of the Navier-Stokes System and Its Applicationsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record