Show simple item record

dc.contributor.authorBorsuk, Michail ( )
dc.contributor.authorPortnyagin, Dmitriy ( )
dc.date.accessioned2019-09-24T13:13:28Z
dc.date.available2019-09-24T13:13:28Z
dc.date.issued1999-06-24
dc.identifier.citationBorsuk, M., & Portnyagin, D. (1999). On the Dirichlet problem for quasilinear elliptic second order equations with triple degeneracy and singularity in a domain with a boundary conical point. Electronic Journal of Differential Equations, 1999(23), pp. 1-25.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/8647
dc.description.abstractIn this article we prove boundedness and Holder continuity of weak solutions to the Dirichlet problem for a second order quasilinear elliptic equation with triple degeneracy and singularity. In particular, we study equations of the form - d/dxi (|x|τ|u|q|∇u|m−2uxt) + α0|x|τ/(x2 n-1 + x2n)m/2 u|u|q+m-2 - µ|x|τ u|u|q-2|∇u|m =
= fo(x) - ∂fi / ∂xi, with α0 ≥ 0, q ≥ 0, 0 ≤ µ < 1, 1 < m ≤ n, and τ > m − n in a domain with a boundary conical point. We obtain the exact Hölder exponent of the solution near the conical point.
en_US
dc.formatText
dc.format.extent25 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectQuasilinear elliptic degenerate equationsen_US
dc.subjectBarrier functionsen_US
dc.subjectConical pointsen_US
dc.titleOn the Dirichlet Problem for Quasilinear Elliptic Second Order Equations with Triple Degeneracy and Singularity in a Domain with a Boundary Conical Pointen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record