Show simple item record

dc.contributor.authorGodoy, Tomas ( )
dc.contributor.authorGossez, Jean-Pierre ( )
dc.contributor.authorPaczka, Sofia ( )
dc.date.accessioned2019-11-21T19:15:04Z
dc.date.available2019-11-21T19:15:04Z
dc.date.issued1999-06-17
dc.identifier.citationGodoy, T., Gossez, J.-P., & Paczka, S. (1999). Antimaximum principle for elliptic problems with weight. Electronic Journal of Differential Equations, 1999(22), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/8857
dc.description.abstractThis paper is concerned with the antimaximum principle for the linear problem with weight -Δu = λm(x)u + h(x) under Dirichlet or Neumann boundary conditions. We investigate the following three questions: Where exactly can this principle hold? If it holds, does it hold uniformly or not? If it holds uniformly, what is the exact interval of uniformity? We will in particular obtain a variational characterization of this interval of uniformity.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectAntimaximum principleen_US
dc.subjectIndefinite weighten_US
dc.subjectFucik spectrumen_US
dc.titleAntimaximum Principle for Elliptic Problems with Weighten_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record