Show simple item record

dc.contributor.authorLee, Cheng ( )
dc.date.accessioned2019-11-21T21:28:31Z
dc.date.available2019-11-21T21:28:31Z
dc.date.issued1999-10-12
dc.identifier.citationLee, C. (1999). Infinitely many homoclinic orbits for Hamiltonian systems with group symmetries. Electronic Journal of Differential Equations, 1999(42), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/8866
dc.description.abstractThis paper deals via variational methods with the existence of infinitely many homoclinic orbits for a class of the first-order time-dependent Hamiltonian systems ż = JHz(t,z) without any periodicity assumption on H, providing that H(t,z) is G-symmetric with respect to z ∈ R2N, is superquadratic as |z| → ∞, and satisfies some additional assumptions.en_US
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectHamiltonian systemen_US
dc.subjectHomoclinic orbitsen_US
dc.titleInfinitely Many Homoclinic Orbits for Hamiltonian Systems with Group Symmetriesen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record