Implicit Quasilinear Differential Systems: A Geometrical Approach
Abstract
This work is devoted to the study of systems of implicit quasilinear differential equations. In general, no set of initial conditions is admissible for the system. It is shown how to obtain a vector field whose integral curves are the solution of the system, thus reducing the system to one that is ordinary. Using geometrical techniques, we give an algorithmic procedure in order to solve these problems for systems of the form A(x)ẋ = α(x) with A(x) being a singular matrix. As particular cases, we recover some results of Hamiltonian and Lagrangian Mechanics. In addition, a detailed study of the symmetries of these systems is carried out. This algorithm is applied to several examples arising from technical applications related to control theory.
Citation
Munoz-Lecanda, M. C., & Roman-Roy, N. (1999). Implicit quasilinear differential systems: a geometrical approach. Electronic Journal of Differential Equations, 1999(10), pp. 1-33.Rights License

This work is licensed under a Creative Commons Attribution 4.0 International License.