Show simple item record

dc.contributor.authorZhang, Kewei ( )
dc.date.accessioned2019-11-22T18:54:52Z
dc.date.available2019-11-22T18:54:52Z
dc.date.issued1999-09-15
dc.identifier.citationZhang, K. (1999). Uniqueness for a semilinear elliptic equation in non-contractive domains under supercritical growth conditions. Electronic Journal of Differential Equations, 1999(33), pp. 1-10.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/8884
dc.description.abstractWe apply the Pohozaev identity to sub-domains of a tubular neighbourhood of a closed or broken curve in ℝn and establish uniqueness results for the smooth solutions of the Dirichlet problem for -Δu + |u|p-1 u = 0. We require the domain to be in ℝn with n ≥ 4 and with p > (n + 1)/(n - 3).en_US
dc.formatText
dc.format.extent10 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1999, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSemilinear elliptic equationen_US
dc.subjectSupercritical growthen_US
dc.subjectUniquenessen_US
dc.subjectNon-contractible domainsen_US
dc.subjectPohozaev identityen_US
dc.titleUniqueness for a Semilinear Elliptic Equation in Non-contractive Domains Under Supercritical Growth Conditionsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record