Show simple item record

dc.contributor.authorCheban, David N. ( Orcid Icon 0000-0002-2309-3823 )
dc.date.accessioned2019-12-11T19:22:20Z
dc.date.available2019-12-11T19:22:20Z
dc.date.issued2000-04-17
dc.identifier.citationCheban, D. N. (2000). Uniform exponential stability of linear almost periodic systems in Banach spaces. Electronic Journal of Differential Equations, 2000(29), pp. 1-18.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9057
dc.description.abstractThis article is devoted to the study linear non-autonomous dynamical systems possessing the property of uniform exponential stability. We prove that if the Cauchy operator of these systems possesses a certain compactness property, then the uniform asymptotic stability implies the uniform exponential stability. For recurrent (almost periodic) systems this result is precised. We also show application for different classes of linear evolution equations: ordinary linear differential equations in a Banach space, retarded and neutral functional differential equations, and some classes of evolution partial differential equations.en_US
dc.formatText
dc.format.extent18 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2000, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectNon-autonomous linear dynamical systemsen_US
dc.subjectGlobal attractorsen_US
dc.subjectAlmost periodic systemen_US
dc.subjectExponential stabilityen_US
dc.subjectAsymptotically compact systemsen_US
dc.titleUniform Exponential Stability of Linear Almost Periodic Systems in Banach Spacesen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record