Show simple item record

dc.contributor.authorDamanik, David ( )
dc.contributor.authorStolz, Gunter ( )
dc.date.accessioned2019-12-12T19:35:23Z
dc.date.available2019-12-12T19:35:23Z
dc.date.issued2000-07-18
dc.identifier.citationDamanik, D., & Stolz, G. (2000). A generalization of Gordon's theorem and applications to quasiperiodic Schrodinger operators. Electronic Journal of Differential Equations, 2000(55), pp. 1-8.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9060
dc.description.abstractWe present a criterion for absence of eigenvalues for one-dimensional Schrodinger operators. This criterion can be regarded as an L^1-version of Gordon's theorem and it has a broader range of application. Absence of eigenvalues is then established for quasiperiodic potentials generated by Liouville frequencies and various types of functions such as step functions, Holder continuous functions and functions with power-type singularities. The proof is based on Gronwall-type a priori estimates for solutions of Schrodinger equations.en_US
dc.formatText
dc.format.extent8 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2000, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectSchrodinger operatorsen_US
dc.subjectEigenvalue problemen_US
dc.subjectQuasiperiodic potentialsen_US
dc.titleA Generalization of Gordon's Theorem and Applications to Quasiperiodic Schrodinger Operatorsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record