Show simple item record

dc.contributor.authorEl Hajji, Mohamed ( )
dc.date.accessioned2019-12-18T18:58:42Z
dc.date.available2019-12-18T18:58:42Z
dc.date.issued2000-02-22
dc.identifier.citationEl Hajji, M. (2000). A diffusion equation for composite materials. Electronic Journal of Differential Equations, 2000(15), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9108
dc.description.abstractIn this article, we study the asymptotic behavior of solutions to the diffusion equation with non-homogeneous Neumann boundary conditions. This equation models a composite material that occupies a perforated domain, in ℝN, with small holes whose sizes are measured by a number r∊. We examine the case when r∊ < ∊N/(N-2) with zero-average data around the holes, and the case when lim∊ → 0r/∊ = 0 with nonzero-average data.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2000, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectDiffusion equationen_US
dc.subjectComposite materialen_US
dc.subjectAsymptotic behavioren_US
dc.subjectH0-convergenceen_US
dc.titleA Diffusion Equation for Composite Materialsen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record