Show simple item record

dc.contributor.authorLei, Yutian ( )
dc.contributor.authorWu, Zhuoqun ( )
dc.date.accessioned2019-12-20T21:04:16Z
dc.date.available2019-12-20T21:04:16Z
dc.date.issued2000-02-21
dc.identifier.citationLei, Y., & Wu, Z. (2000). C1-alpha convergence of minimizers of a Ginzburg-Landau functional. Electronic Journal of Differential Equations, 2000(14), pp. 1-20.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9127
dc.description.abstractIn this article we study the minimizers of the functional E∊(u,G) = 1/p ∫G | ∇u|p + 1/4∊p ∫G (1 - |u|2)2, on the class Wg = {v ∈ W1,p (G, ℝ2); v|∂G = g}, where g : ∂G → S1 is a smooth map with Brouwer degree zero, and p is greater than 2. In particular, we show that the minimizer converges to the p-harmonic map in C1loc (G, ℝ2) as ε approaches zero.en_US
dc.formatText
dc.format.extent20 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2000, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectGinzburg-Landau functionalen_US
dc.subjectRegularizable minimizeren_US
dc.titleC1-alpha Convergence of Minimizers of a Ginzburg-Landau Functionalen_US
dc.title.alternativeC1,α Convergence of Minimizers of a Ginzburg-Landau Functional
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record