Show simple item record

dc.contributor.authorRagoub, L. ( )
dc.date.accessioned2020-01-07T14:41:03Z
dc.date.available2020-01-07T14:41:03Z
dc.date.issued2000-06-12
dc.identifier.citationRagoub, L. (2000). Symmetry theorems via the continuous steiner symmetrization. Electronic Journal of Differential Equations, 2000(44), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9136
dc.description.abstractUsing a new approach due to F. Brock called the Steiner symmetrization, we show first that if u is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then Ω is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.en_US
dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2000, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectMoving plane methoden_US
dc.subjectSteiner symmetrizationen_US
dc.subjectOverdetermined problemsen_US
dc.subjectLocal symmetryen_US
dc.titleSymmetry Theorems via the Continuous Steiner Symmetrizationen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record